SHARP

Technical Data

GP1H20 IrDA 1.0 / IrDA 1.2 Low Power Compliant Compact Feature Type

1. Features

- IrDA 1.2 Low Power Option Compliant (I_F = 27 mA at Reception distance of 20 cm)
- Industry Smallest Package Design for IrDA 1.0 Compliant Infrared Transceiver (W 8.7 x D 4.2 x H 3.15 mm)
- Suitable and Fits in the Mobile Phone Connector Dimensions
- Low Power Consumption by Built-in Shut-Down Mode (Max. 1 mA)

2. Description

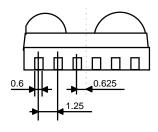
The SHARP GP1H20, low operating smallest IrDA 1.0 compliant infrared transceiver module, provides the interface between logic and IR signals for through-air, serial, half-duplex IR wireless data links and is designed to satisfy the IrDA physical layer specifications.

The SHARP GP1H20 infrared transceiver module contains a high speed, high efficiency, low power consumption AlGaAs LED, a silicon PIN photodiode, and the low power driven bipolar integrated circuit. The IC contains a LED driver circuit and a receiver, that provides the RX output supporting 2.4k to 115.2 kb/s IrDA signals, at both IrDA 1.0 communication mode (communication distance of 1.0m at emitter I_F = 300 mA), and IrDA 1.2 Low Power Option communication mode (communication distance of 0.2m at emitter I_F = 27 mA) This dual mode

- Wide Range Operating Voltage Provide Power Line Design Flexibility (V_{CC} = 2.7V ~ 5.5V)
- Soldering Reflow Capability for Automated Production Process
- SMD Package Enables both Vertical Mount and Horizontal Mount to PCBs

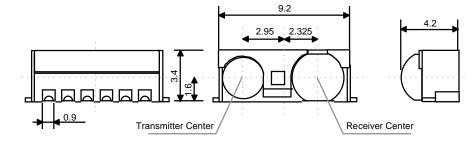
communication capability provides wider application use in final product, as a wireless data link with PCs, PDAs, or any other IrDA compliant application already introduced to the market place.

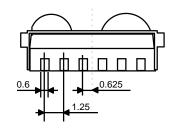
Though the GP1H20 transceiver module is operated at 2.7V, the module can still be operated at 5.5V without any performance desiccation. The manufacturers would surely get the advantage of energy saving design in any application field, with having alternatives of supply voltage, for other components.


Further more, the GP1H20 transceiver module does have the built-in shut-down mode for those who are very conscious about the current consumption, by reducing the current consumption down to 1 mA (max.) at the shutdown mode.

3. Outline Dimensions

All dimensions given below is in mm. The dimensions below are only applicable for design reference, and subject to change without notice. The metal shield case for GP1H20 is also available as an option for excellent noise immunity, of which the Outline Dimensions are also provided on the next page. Contact local SHARP for the device specifications to ensure the outline dimensions.


(GP1H20)



(With SHIELD CASE)

UNIT: mm

UNIT: mm

- 1. Unspecified tolerance shall be determined.
- 2. Resin burr shall not be included in outline dimensions.
- 3. Package Material : Visible Light Cut-off Resin (Color: Black)
- 4. Pin Assignment : See "Pinout" for details.

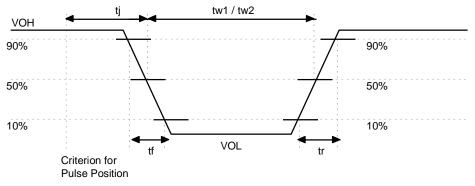
4. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Conditions
Supply Voltage	V _{CC}	0	6.0	V	
Operating Temperature	T _{OP}	-10	+70	°C	
Storage Temperature	T _{ST}	-20	+85	°C	
Soldering Temperature	T _{SOL}		*(240)	°C	*TENTATIVE Value
Peak Forward LED Current	I _{FM}		400	mA	

5. Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit	Conditions
Operating Temperature	T _{OP}	-10	70	°C	
Supply Voltage	V _{CC}	2.7	5.5	V	
Logic High Transmitter Input Voltage (TXIN)	V _{IH}	2.4		V	
Logic Low Transmitter Input Voltage (TXIN)	V _{IL}		0.4	V	
Logic High Receiver Input Irradiance	E _{IH}	0.004		mW/cm ²	Bit Rate =2.4k ~ 115 kb/s (in band signals) ^{*1}
Receiver Signal Rate		2.4	115.2	kb/s	
Ambient Light					*2

1. An in-band optical signal is a pulse/sequence where the peak wavelength, λp , is defined as 850 nm $\leq \lambda p \leq$ 900 nm, and the pulse characteristics are compliant with the IrDA Serial Infrared Physical Layer Link Specifications.


2. See IrDA Serial Infrared Physical Layer Link Specification Appendix A for ambient lights.

6. Electrical and Optical Specifications

Specifications hold over the Recommended Operating Conditions, unless otherwise noted herein. All typical values are at 25° C and 3.3V, ambient light on the receiver surface under 10 lz, unless otherwise noted herein.

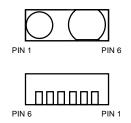
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply Voltage	V _{CC}	2.7	-	5.5	V	
Maximum Reception Distance	L1	<u>> 0.2</u>	-	-	m	$2\Phi 1/2 \le 15^{\circ}$, IE = 3.6 mW/sr
	L2	<u>> 1.0</u>	-	-	m	$2\Phi 1/2 \le 15^{\circ}$, IE = 40 mW/sr
Data Rate	BR	2.4	-	115.2	kb/s	
Operating Temperature	T _{OP}	-10	-	70	°C	
RECEIVER SIDE						
High Level Output Voltage	V _{OH}	4.5	-	-	V	$V_{CC} = 5V$
Low Level Output Voltage	V _{OL1}	-	-	0.6	V	$V_{CC} = 5V, *I_{OL} = 400 \text{ uA}$
	V _{OL2}	-	-	0.6	V	$V_{CC} = 3V, *I_{OL} = 400 \text{ uA}$
Viewing Angle	2Φ	30	-	-	degrees	
Low Level Pulse Width	tw_1	0.8	-	16	µsec	BR = 2.4 kb/s (pulse width 78.12 ms)
	tw ₂	0.8	-	8	μsec	BR = 115.2 kb/s (pulse width 1.63 ms)
	I _{CC1}	-	1.0	1.4	mA	With no input signal, V_{CC} = 5.0V
Current Consumption		-	0.7	1.0	mA	With no input signal, $V_{CC} = 3.0V$
	I _{CC2}	-	-	1.0	μΑ	Shut-Down Mode
Rise Time	tr			1.2	μsec	see below
Fall Time	tf			0.2	μsec	see below
TRANSMITTER SIDE						
Radiant Intensity	I _{E1}	3.6	-	28.8	mW/sr	$I_{\rm F} = 27 \text{ mA}, 2\Phi 1/2 \le 15^{\circ}$
	I _{E2}	40		350	mW/sr	$I_F = 300 \text{ mA}, 2\Phi 1/2 \le 15^{\circ}$
Peak Emission Wavelength	λp	850	870	900	nm	$I_F = 20 \text{ mA}$
Peak LED Current	I _{LEDA}	-	300	-	mA	All mode
Rise Time	tr (IE)	-	0.23	0.6	μsec	$I_F = 27 \text{ mA}$, see below
Fall Time	tf (IE)	-	0.17	0.6	μsec	$I_F = 27 \text{ mA}$, see below
Transmitter Data Input Current	I _{IH}			2.3	mA	$V_{IN} = 2.4V$
(Logic High)						
Transmitter Data Input Current	I _{IL}			TBD	μΑ	$V_{IH} = 0.0V$
(Logic Low)						
High Level Input Voltage	V _{IH}	2.4			V	
Low Level Input Voltage	V _{IL}			0.4	V	

^{*}I_{OL}: Current goes into IC while RXD is ON state (Low Level Output)

GP1H20 Infrared Transceiver Module Output Waveform

7. Truth Table

INPUTS			OUTP		
TXIN	EI	SD	IE (LED)	RXD	
V _{IH}	Х	V _{IH}	High (On)	NV	
V _{IH}	Х	V _{IL (or OPEN)}	High (On)	High	SD mode
V _{IL}	E _{IH}	V _{IH}	Low (Off)	Low	
V _{IL}	E _{IH}	V _{IL (or OPEN)}	Low (Off)	High	SD mode
V _{IL}	E _{IL}	Х	Low (Off)	High	


X ... Don't care NV ... Not Valid

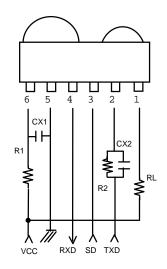
 $E_{IH} \ldots \mbox{Optical inputs to Receiver}$

EIL ... No Optical inputs to Receiver

8. Pinouts

PIN #	Description	Symbol
1	LED Anode	LEDA
2	Transmitter Data Input	TXD
3	Shut Down Circuit Input	SD
4	Receiver Data Output	RXD
5	Ground	GND
6	Supply Voltage	V _{CC}

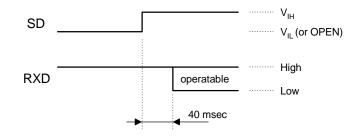
9. Application Electrical Design Hints


The following figure and table shows the recommended application circuit and passive values for GP1H20. The following table only provides an idea for external passive values and is only applicable to customers' design reference. See Section 11 for technical reference data in optical / electrical characteristics.

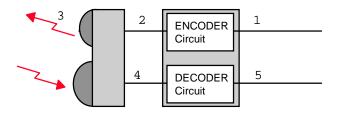
9-1 Application Circuit and External Passives

Following application circuit and external passives enables GP1H20 to operate in both IrDA 1.0 and IrDA 1.2 low power option communication mode at $V_{CC} = 3.0V$.

Components	Recommended Values
CX1	47 μF
CX2	1500 pF
R1	47 Ω, 1/8W
R2	1k Ω, 1/8W
	2.2 Ω , 1/2W (IrDA 1.0 at V _{CC} = 3.0V)
RL	43 Ω , 1/8W (IrDA 1.2 Low Power at
	$V_{CC} = 3.0V$)


All recommended values are at $V_{CC} = 3.0V$

9-2 Shut Down Mode


The "Shut-Down" pinout is an active Low terminal, and performs the power saving function in accordance with following chart:

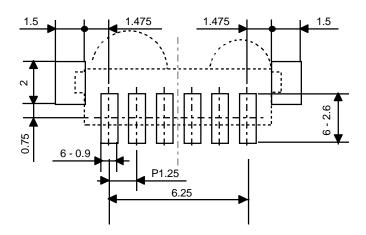
Input	Performance
HIGH	Normal Mode
LOW	Shut Down Mode
OPEN	Shut Down Mode

9-3 Example of Signal Wave Form

Following wave form explains how each of the waveform looks like to operate GP1H20 in appropriate manner conforming to IrDA standard. Following waveform example is only applicable to design and evaluation reference only, to understand the GP1H20 IrDA 1.0 / IrDA 1.2 hardware implementation as well as system measurement.

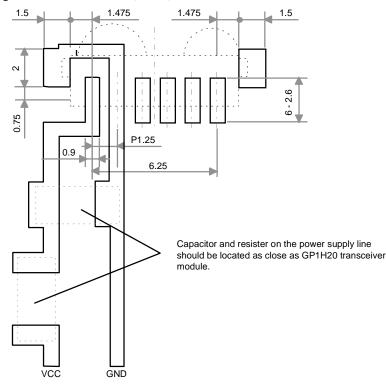
No.	Signal Description	Waveform
1	Transmitting Data Waveform	
2	Encoder Circuit Output Waveform	
3	Transmitter Output Optical Signal Waveform	
4	GP1H20 Receiver Output Waveform	
5	Receiving Data Waveform	

T = 1 / Data Rate

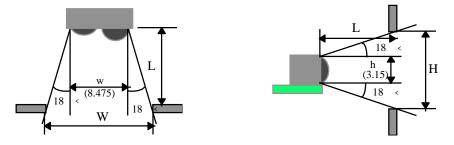

Data Rate:

2.4 kbps, 9.6 kbps 19.2 kbps, 38.4 kbps 57.6 kbps, 115.2 kbps

10. Application Mechanical Design Hints


10-1. Recommended Foot Print

Following figure shows the basic recommended foot print for PCB design in using SHARP GP1H20 infrared transceiver module. All values in following figure are only applicable to design reference and in mm (UNIT).


10-2. Electrical & Mechanical Design Hint

Following PCB footprint figure shows recommended location for the resisters and capacitors for better performance, especially for GP1H20 power supply (V_{CC}) line. The R1 and CX1 for this line (see section 9-1 for application circuit) should be mounted close to GP1H20 transceiver module for its better performance. All values in following figure are only applicable to design reference and in mm (UNIT).

10-3. Design Hints for Cabinet and IR Cosmetic Window

Following figure and calculation explain the example and designing hints for cabinet and IR cosmetic window with $\pm 18^{\circ}$ viewing angles, in vertical and horizontal axis. All values for the transceiver dimensions are applicable only for design reference, and in mm (UNIT).

The optical window size should be the minimum size of W x H rectangular or elliptical in order not to reduce IrDA data transfer performance. The dimensions for W can be calculated by the formula of:

 $W = 2 x L x \tan 18 + w$

and the dimensions for H can be calculated by the formula of:

 $H = 2 x L x \tan 18 + h$

in case of having viewing angle of + 18, which conforms or exceeds the IrDA Serial Infrared Physical Layer Link Specifications. Any values to be calculated with above formula must be given in mm.

(IMPORTANT NOTICE)

This document is a "Preliminary Information" of Sharp GP1H20 Infrared Transceiver series. Any of information under this document, such as Specifications, are applicable only for GP1H20 series, and are subject to change at any time without notice.

In absence of confirmation by device Specification Sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's device, shown in catalogues, data books, Preliminary Information, etc. Contact SHARP, or SHARP local representatives in order to obtain the latest version of the device Specification Sheets before using any SHARP's devices.

LIFE SUPPORT POLICY

SHARP components should not be used in medical devices with life support functions or in safety equipment (or similiar applications where component failure would result in loss of life or physical harm) without the written approval of an officer of the SHARP Corporation.

LIMITED WARRANTY

SHARP warrants to its Customer that the Products will be free from defects in material and workmanship under normal use and service for a period of one year from the date of invoice. Customer's exclusive remedy for breach of this warranty is that SHARP will either (i) repair or replace, at its option, any Product which fails during the warranty period because of such defect (if Customer promptly reported the failure to SHARP in writing) or, (ii) if SHARP is unable to repair or replace, refund the purchase price of the Product upon its return to SHARP. This warranty does not apply to any Product which has been subjected to misuse, abnormal service or handling, or which has been altered or modified in design or construction, or which has been serviced or repaired by anyone other than Sharp. The warranties set forth herein are in lieu of, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will Sharp be liable, or in any way responsible, for any incidental or consequential economic or property damage.

The above warranty is also extended to Customers of Sharp authorized distributors with the following exception: reports of failures of Products during the warranty period and return of Products that were purchased from an authorized distributor must be made through the distributor. In case Sharp is unable to repair or replace such Products, refunds will be issued to the distributor in the amount of distributor cost.

SHARP reserves the right to make changes in specifications at any time and without notice. SHARP does not assume any responsibility for the use of any circuitry described; no circuit patent licenses are implied.

SHARP.

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd., M/S 20 Camas, WA 98607, U.S.A. Phone: (360) 834-2500 Telex: 49608472 (SHARPCAM) Facsimile: (360) 834-8903 http://www.sharpsma.com

©1998 by SHARP Corporation

EUROPE

SHARP Electronics (Europe) GmbH Microelectronics Division Sonninstraße 3 20097 Hamburg, Germany Phone: (49) 40 2376-2286 Telex: 2161867 (HEEG D) Facsimile: (49) 40 2376-2232

ASIA

SHARP Corporation Integrated Circuits Group 2613-1 Ichinomoto-Cho Tenri-City, Nara, 632, Japan Phone: (07436) 5-1321 Telex: LABOMETA-B J63428 Facsimile: (07436) 5-1532